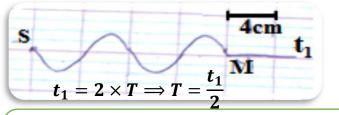
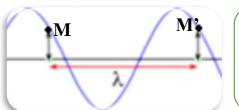
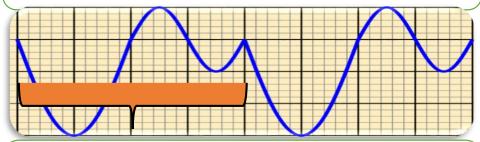

Otmane AITHISSI

www.pc1.ma

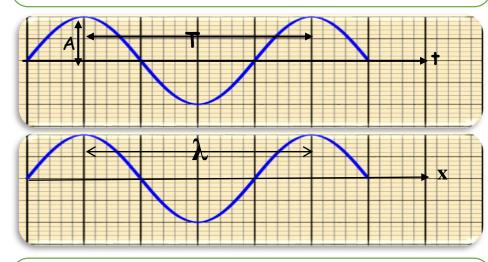

Les ondes mécaniques progressives

La période ; T (période spatiale).


La durée séparant l'arrivée de deux perturbations successives en un point. La durée nécessaire pour parcourir une distante égale à la longueur d'onde λ .


$$T = 2 \times 20 \text{ms} = 0.04 \text{s ou } T = 4 \times S_H$$

Deux points vibrent en phase si elles vibrent au même instant et de la même manière. Y(M) = Y(M')



d = MM' = ...,00 $d = k.\lambda$, $(k \in N)$. Est le phénomène qui accompagne la propagation, dans un milieu matériel d'un signal (perturbation) se répétant identique à lui-même à intervalles de temps identiques.

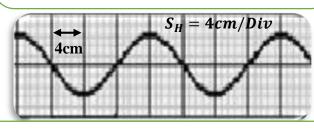
Elle est dite sinusoïdale si sa variation est une sinusoïde en fonction du temps et l'élongation d'un point du milieu de propagation s'écrit de la manière suivante: $Y_M(t) = A\cos\left(\frac{2\pi}{T}t + \varphi\right)$.

 φ ; la phase à l'origine "en rad" (les conditions initiales)

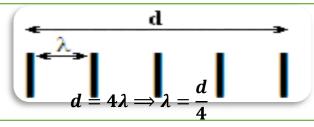
 λ : Longueur d'onde en mètre (m)

 $T: (T = \frac{1}{N})$ Période en seconde (s)

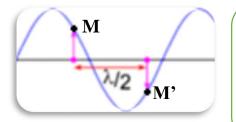
N, v: Fréquence en Hertz (Hz)


V : vitesse de propagation en m/s

 $v = \frac{d}{t} = \frac{\lambda}{T} = \lambda. v$

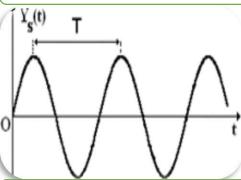

PHYSIQUE CHIMIE 2 bac SM/SP

La longueur d'onde; λ (période spatiale).

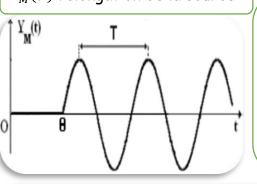

La distance entre deux points qui vibrent de la même manière à un instant donné. La distance parcourue pendant un intervalle de temps égal à la période T.

$$\lambda = 4 \times 4$$
cm = 0.16m ou $\lambda = 4 \times S_H$

Deux points vibrent en opposition de phase Y(M) = -Y(M')



d =MM'=..,50 d= (k+0.5). λ , $d = (k + \frac{1}{2})\lambda$ (k \in N).


Otmane AITHISSI

Equation horaire d'un point du milieu de propagation Et le sens de mouvement d'un point

 $Y_S(t)$ l'élongation de la source

 $Y_M(t')$ l'élongation de la source

A l'instant $t_0 = 0$, la source (5) se déplace vers le haut alors le premier mouvement de touts les points du milieu est vers le haut.

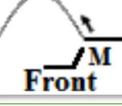
La perturbation au

perturbation de la

source (S) avec un

perturbation met

un certain temps

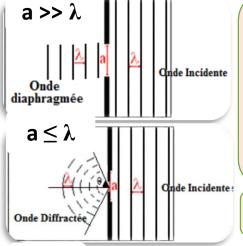

SàM.

pour progresser de

 $Y_M(t') = Y_S(t) + t' = t + \theta$

retard θ , car la

point M reproduit la

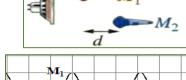

Le premier mouvement qu'effectueras le point M est vers le haut donc celle de S à t=0s est aussi vers le haut.

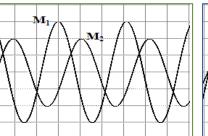
Une onde plane périodique rencontre un obstacle, une ouverture ou une fente d'épaisseur a :

Phénomène de diffraction

Selon la relation entre **a** et la longueur d'onde λ on distingue trois cas:

Onde Incidente


L'onde diffractée et l'onde incidente ont la même période, la même célérité et, par conséquent, la même longueur d'onde


milieu dispersif

 M_1

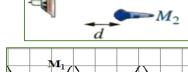
 M_2

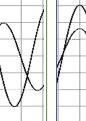
de l'onde dans le milieu dépend de la fréquence de la source

Superposition de deux ondes

sans se perturber.

sa forme propre.


Deux ondes mécaniques peuvent se superposer


amplitudes s'ajoutent algébriquement.

Lorsque les deux perturbations se croisent, leurs

Après le croisement, chaque perturbation reprend

Un milieu est **dispersif** si la vitesse (célérité)

Physique chimie 2 bac SM/SP

En éloignant le microphone M2 de la source on constate que : La courbe de M_2 s'est décalée de

la courbe de M_1 .

 $a < \lambda$

Onde Diffracte

L'amplitude de la courbe de microphone M_2 a diminué.

Si le microphone M_2 s'est déplacé de λ ou \mathbf{k} . λ alors les deux courbes seront en phases

 λ : La distance minimale entre les deux microphones pour observer les deux tensions en phase.